Spray Nozzle Technology
Drop Size Classification

- 1985: BCPC
- 1989: TeeJet Cat 41M published tables
- 2004: ASAE S572
- 2009: ASAE S572.1
- 2012: ISO WG13
Droplet Size Measurement and Classification

ANSI/ASAE S572.1 MAR2009
Spray Nozzle Classification by Droplet Spectra
Droplet Size Categories

Example Reference Graph

<table>
<thead>
<tr>
<th>Category Border</th>
<th>Reference Test Nozzle</th>
<th>Approx. VMD (572.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC / XC</td>
<td>TP6515-SS</td>
<td>670</td>
</tr>
<tr>
<td>XC / VC</td>
<td>TP6510-SS</td>
<td>510</td>
</tr>
<tr>
<td>VC / C</td>
<td>TP8008-SS</td>
<td>405</td>
</tr>
<tr>
<td>C / M</td>
<td>TP11006-SS</td>
<td>335</td>
</tr>
<tr>
<td>M / F</td>
<td>TP11003-SS</td>
<td>235</td>
</tr>
<tr>
<td>F / VF</td>
<td>TP11001-SS</td>
<td>150</td>
</tr>
<tr>
<td>VF / XF</td>
<td>MeeFog IP-16</td>
<td>70</td>
</tr>
</tbody>
</table>

Figure 1 – Sample reference graph developed from measurements averaged from three types of laser instruments. NOTE: To view figure in color please go to http://www.asabe.org/standards/images/s572images.html

Data extracted from American Society of Agricultural and Biological Engineers (ASABE) Standard S-572.1.
Measuring Equipment

- Malvern
- PMS-OAP (Particle Measuring System – Optical Array Probe)
- PDPA (Phase Doppler Particle Analyzer)
- Oxford Visisizer-PDIA (Particle Droplet Image Analysis)
Nozzle Materials

Ceramic
Superior wear life; highly resistant to abrasive and corrosive chemicals

Polymer
Good wear life; good chemical resistance; orifice susceptible to damage when cleaned improperly

Stainless Steel
Good wear life; excellent chemical resistance; durable orifice

Brass
Poor wear life; susceptible to corrosion, especially with fertilizers
Nozzle Material Comparison

<table>
<thead>
<tr>
<th>Material</th>
<th>Example Tip</th>
<th>Wear Resistance Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brass</td>
<td>TP8004</td>
<td>1</td>
</tr>
<tr>
<td>Celcon Polymer</td>
<td>XR11004-VP or TT11004VP</td>
<td>2 to 6</td>
</tr>
<tr>
<td>Stainless Steel</td>
<td>XR8004VS</td>
<td>4 to 6</td>
</tr>
<tr>
<td>UHMWPE</td>
<td>AIXR11004VP</td>
<td>8 to 10</td>
</tr>
<tr>
<td>Ceramic</td>
<td>XR11004-VK</td>
<td>12 to 14</td>
</tr>
</tbody>
</table>

Ultra High Molecular Weight Polyethylene
Nozzle Wear

New Flat-Fan Nozzle

Worn Nozzle

Improperly Cleaned
Spray Pattern Check

New Nozzles Worn Nozzles Damaged Nozzles

NEW SPRAY TIPS
Produce a uniform distribution when properly overlapped.

WORN SPRAY TIPS
Have a higher output with more spray concentrated under each tip.

DAMAGED SPRAY TIPS
Have a very erratic output – overapplying and underapplying.
Nozzle Wear

• When do I need to replace my tips?
 – When flow rates are 10% over nominal flow

• Wear rates depend on:
 – Tip material (stainless, polymer, ceramic)
 – Chemicals used
 – Operating pressure
 – Care used when cleaning
Selecting a Tip

• Coverage vs. Drift Control
• How much coverage can I sacrifice for drift control?
• Look at your variables
 – Product
 – Plant
 – Speed
 – Winds
 – Pressure
 – Density
MODE OF ACTION IS A MAJOR FACTOR IN NOZZLE SELECTION
Droplet Size
Standard Flat Spray

XR TeeJet®
Turbo TeeJet®
Air Induction XR TeeJet®
Turbo TeeJet® Induction
New Chemical Formulations

USE AIR INDUCTION TIPS!!!!
Air Induction Technology
Air Induction Technology

TP11003

TTI11003
AIXR vs. XR Drop Size Classification

XR TeeJet® (XR) and XRC TeeJet® (XRC)

<table>
<thead>
<tr>
<th>psi</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>XR11001</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>VF</td>
</tr>
<tr>
<td>XR110015</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>XR11002</td>
<td>M</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>XR110025</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>XR11003</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>XR11004</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>XR11005</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>F</td>
</tr>
<tr>
<td>XR11006</td>
<td>C</td>
<td>C</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
</tbody>
</table>

AIXR TeeJet® (AIXR)

<table>
<thead>
<tr>
<th>psi</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIXR110015</td>
<td>XC</td>
<td>XC</td>
<td>VC</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>M</td>
<td>M</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>AIXR11002</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>VC</td>
<td>VC</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>AIXR110025</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>VC</td>
<td>VC</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>AIXR11003</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>VC</td>
<td>VC</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>AIXR11004</td>
<td>UC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>VC</td>
<td>VC</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>AIXR11005</td>
<td>UC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>VC</td>
<td>VC</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>AIXR11006</td>
<td>UC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>VC</td>
<td>VC</td>
<td>VC</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>
AIXR TeeJet®
TTI Drop Size Classification

Turbo TeeJet Induction (TTI)

<table>
<thead>
<tr>
<th>TTI110015</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
</tr>
<tr>
<td>TTI11002</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
</tr>
<tr>
<td>TTI110025</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
</tr>
<tr>
<td>TTI11003</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
</tr>
<tr>
<td>TTI11004</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
</tr>
<tr>
<td>TTI11005</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
</tr>
<tr>
<td>TTI11006</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>UC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
<td>XC</td>
</tr>
</tbody>
</table>
Turbo TeeJet® Induction
Droplet Size

(Drifttable “Fine” Droplets)

XR TeeJet®
(>30%)

Turbo TeeJet®
(>15%)

Air Induction XR TeeJet®
(>10%)

Turbo TeeJet® Induction
(>2%)
PWM for Sprayers
DynaJet Products

• DynaJet Flex
 – Works with external rate control
 – Not compatible with nozzle flow sensors
 – Designed for relatively fast OEM adoption
 – Console has ram mount for easy mounting
DynaJet

Pressure Regulating System
• One driver per boom section
• Quantity of sections determined by machine configuration (plumbing, controller)
• 15 sections max
• 20 Nozzles per section max

• A/B nozzle groups operate out of phase with each other
• Drivers self-configure on every power cycle
DynaJet Operating Modes

• Manual Mode
 – Operator adjusts duty cycle (% on time) directly
 – Duty cycle = flow capacity = nozzle size
 – Rate controller regulates normally

• Auto Mode
 – Operator sets droplet size category
 – DynaJet system monitors pressure and adjusts duty cycle to maintain droplet size
 – Rate controller regulates normally
DynaJet

- Lab testing in process
- Field testing to happen this Spring
- Customer testing began this past fall
- Expected to release during 2014