Research Farm Mapping Options

An Overview of:

GPS
GIS
Remote Sensing
Web based information
What is GPS?

- GPS: The Global Positioning System is a satellite based navigation system consisting of a network of 26 satellites that are orbiting in space eleven thousand miles above Earth’s Equator. The satellites are constantly moving, making two complete orbits around the Earth every 24 hours.
Levels of GPS Accuracy

- **Horizontal vs. Vertical**
 Accuracy estimations by manufacturers are based on the horizontal “X/Y” axis.
- **Vertical accuracy**, “Z”, is usually 3 times worse than horizontal.
Levels of GPS Accuracy

• Absolute GPS: 50 – 150 feet

Absolute GPS is based solely on the satellites’ triangulation with no ground based reference. Used mainly in low end cost items such as On-Star and cheap handheld units.
Levels of GPS Accuracy

• WAAS: 2 – 10 feet (DGPS < 2 feet)

Wide Area Augmentation System, WAAS, is based on a network of approximately 25 precisely surveyed ground reference stations throughout North America. These stations receive the satellite GPS signals and correct them and uplink to a geosynchronous satellite which is then rebroadcast for WAAS enabled receivers.

Differentially Corrected GPS, DGPS, requires a second receiver to triangulate the satellite data with a ground based transmitter. In many areas, WAAS (because of proximity to its tower network) has reached DGPS accuracy.
Levels of GPS Accuracy

- OmniSTAR: < 3 feet; usually < 1 foot

OmniSTAR is a wide-area differential GPS service, using satellite broadcast techniques. Data from many widely-spaced Reference Stations is used in a proprietary multi-site solution to achieve sub-meter positioning over most land areas worldwide. Yearly subscription fee required on top of high initial cost.
Levels of GPS Accuracy

- **RTK**: 1 cm (fixed) 5 cm (floating)

 » 2.54 cm = 1 inch

Real Time Kinetics, RTK, requires a transmitting base station within a 10 mile radius of the receivers. This allows accuracy not only in the horizontal axis, but also in the vertical axis, thus allowing excellent elevation data to be accessed.

Pictures on left and right represent two types of portable base stations.
Levels of GPS Accuracy

• Absolute GPS: 50 – 150 feet
• WAAS: 2 – 10 feet
• DGPS: 1 – 3 feet (including differentially corrected WAAS)
• OmniSTAR: < 3 feet; usually < 1 foot
• RTK: 1 cm (fixed) 5 cm (floating)
 » 2.54 cm = 1 inch
Guidance use by GPS

- Guidance with WAAS (DGPS)

Works well with Spraying and Fertilizing
Accuracy 1-3 feet
Guidance use by GPS

• Guidance by RTK

HOW IT WORKS

Autopilot is powered by Trimble’s high performance GPS-based navigation controller connected to your tractor’s power steering mechanism. An in-cab display lets you select field patterns and view operating parameters. Once Autopilot lines up your tractor at the beginning of a row, the automated steering guides the tractor smoothly down the row. A lightbar provides feedback on your course. It’s that simple.

Accuracy within 1 cm – Excellent Precision control
GIS: Geographical Information System

What is It?

GIS is the software that transforms GPS from decimal degree points of Latitude and Longitude into an understandable spatial encyclopedia.

Bob Pollard's damaged wheat

(39.6 ac.) Pollard Damaged Wheat
Points 1
GIS: Geographical Information System

- Designs the data to be understandable and visual
- Resource management tool
GIS: Geographical Information System

It allows for the incorporation of Imagery

- GPS WITHOUT IMAGERY

GPS Fairway Polygons
Hole 5 and Hole 15
GIS: Geographical Information System

- GIS takes GPS data and correlates it to imagery
- Look at the bottom fairway, the GPS signal drifted and mistakes were made
Clark County, Nevada provides excellent aerial images

1 foot resolution
Updated every 6 months
Geo-Referenced

Extremely Affordable

Imagery file size exceeds 150 MB of data
GIS: Geographical Information System

- GIS interpolates data to interpret trends and perform statistical analysis.
- Here is an image of a golf course overlaid with data points acquired from NIR sensors mounted on 3 mowers.
GIS: Geographical Information System

- This is the data interpolated and shown as 15 ft square zones representing different classes of NDVI.
GIS: Geographical Information System

- Establishes an historical spatial database

Legend

<table>
<thead>
<tr>
<th>NDVI</th>
<th>Value Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark Red</td>
<td>0.48684 - 0.52726</td>
</tr>
<tr>
<td>Orange</td>
<td>0.52727 - 0.56788</td>
</tr>
<tr>
<td>Yellow</td>
<td>0.56789 - 0.60810</td>
</tr>
<tr>
<td>Light Green</td>
<td>0.60811 - 0.64852</td>
</tr>
<tr>
<td>Green</td>
<td>0.64853 - 0.68894</td>
</tr>
<tr>
<td>Light Blue</td>
<td>0.68896 - 0.72936</td>
</tr>
<tr>
<td>Blue</td>
<td>0.72937 - 0.76978</td>
</tr>
</tbody>
</table>

August 6, 2005

September 14, 2005

October 28, 2005
Industry Standards

- All GPS is received as decimal degrees of Latitude/Longitude known as WGS84 or World Geographical Survey of 1984
- ESRI has established itself as the leading GIS software provider
- The SHAPE (.shp) file format of ESRI has become the Industry Standard
- Trimble, Garmin, and other major GPS receivers save their points in the .shp file format
Pros and Cons of Proprietary GIS Software

Proprietary GIS uses its own encryption of data to limit its use to a specific software program.

- **Benefits**
 - One stop shopping for hardware and software
 - Hands-on learning of software
 - Easily accessible database

- **Pitfalls**
 - Survivor ability of software company
 - Software Antiquity
 - Yearly subscription fee
 - Compatibility of Proprietary software with GIS industry standard (.shp)
 - Ownership issues surrounding your course’s data
What is Remote Sensing?

- Remote Sensing is the acquisition of information of an object by a recording device that is not in physical contact with the object.
Ways of Sensing your Turf

- Ground Penetrating Radar
- NDVI Sensor
- Geonics Conductivity Probe
- DualEM Conductivity Sensor
Ground Penetrating Radar

The radar method determines subsurface conditions by sending pulses of high frequency electromagnetic waves into the ground from a transmitter antenna located on the surface. Subsurface structures cause some of the wave energy to be reflected back to the surface, while the rest of the energy continues to penetrate deeper. The reflected wave energy is picked up by a receiver antenna on the surface. These signals are then processed and plotted in a distance-versus-time display. Thus, as the radar antenna is slowly towed across the surface, a continuous cross-sectional “picture” of subsurface conditions is generated. The radar reflections are caused by wave responses at interfaces of materials having different electrical properties. These interfaces include many natural conditions such as bedding, cementation, changes in moisture and clay content, voids, fractures, and intrusions as well as man-made objects.

GPR

Depth of penetration is dependent on conditions found at each site. Radar waves are attenuated (absorbed or scattered) by certain properties of the site’s soil, the most important of which is the electrical conductivity of the material. Generally, better overall penetration is achieved in dry sandy soils; reduced penetration is achieved in moist, clayey or conductive soils. Considerable depth may be attained in saturated sands or through lake water if the specific conductance of the water is low. Radar penetration is excellent in massive dry materials such as granite, limestone and concrete.

Resolution of radar reflections can be increased by increasing the frequency of the radar waves transmitted into the ground. This is done by using one of several different antennas available for the radar system. However, there is a trade-off between increased resolution and depth of penetration. In good conditions, the higher frequency (800 and 500 megahertz (MHz)) antennas are capable of penetrating 5 to 15 feet of soil with resolution on the order of 0.5-2 inches, whereas the lower frequency (300 and 80 MHz) antennas may attain 30 to 60 feet depths with resolution on the order of 0.6-3 feet.

Depths to buried layers or objects is proportional to the time it takes the radar pulse to travel from the surface antenna to the target and back again to the receiver antenna. This time is called two-way travel time and is dependent on the dielectric properties of the media through which the radar pulse travels. These dielectric properties are in turn a complex function of the composition and moisture content of the soil and rock. In almost all cases, the moisture content has the greatest influence because water has a very high dielectric value compared to common soils and rock. The greater the amount of water saturation, the lower the radar velocity and the fewer the objects will appear in the radar profile.
Equipment that measure Soil EC

• DualEm
 – The DualEm utilizes the Electromagnetic Induction Method which measures the soil’s response to a magnetic field between transmitter and receiver coils located 1 meter apart on a unit riding along the soil’s surface.

• Veris
 – Veris enlists the Galvanic Contact Resistivity Method. This method measures the soil resistance to the flow of an electric current emitted and collected by electrodes mounted on coulters. This resistance is then converted to conductivity and displayed in millisiemens per meter.
EC Data on Green

Green 9 Images

Aerial Image Spring 2004

Elevation Contour

4' Depth

4" Depth

10" Depth

4" Depth

SF_5

9.0 - 12.0 10.7 - 19.0
12.1 - 14.3 19.7 - 24.8
1.8 - 9.5 14.4 - 16.6
24.9 - 38.1

10" Depth

SF_5

12.0 - 15.4 21.7 - 25.0
15.5 - 18.4 25.7 - 33.5
27.7 - 11.9 38.5 - 21.6
33.6 - 68.4
Ground Based NIR Sensors measures biomass reflectance levels in visible and near Infrared wavelengths. Crop Circle sensor on garage-door opener.
What is NDVI?

There are many Vegetation Indexes, but the industry standard for turf is NDVI or Normalized Difference Vegetative Index. NDVI is simply a mathematical method of representing the two wavelengths’ reflectance intensities in a way that can best show differences between healthy turf and poor growth. Specifically it is: \((\text{NIR-VIS})/(\text{NIR+VIS})\). The number range is usually between \(0.25000\) and \(0.85000\). The lower range represents a low BioMass/Chlorophyll level and the higher Range represents a high BioMass/Chlorophyll level (a healthy turf).
Taking the image to the Course

This is the next step in the Remote Sensing Process.
Uploading the imagery into an Ipaq with GPS
And navigating to the areas of concern.

To know what the problem is you must
Ground Truth the area
Imagery and Other Web based GIS Information

- The Internet can provide remotely acquired data from various sources:
 - Raster
 - Georeferenced imagery
 - Vector
 - Line, Point, and Polygon GIS database
Raster Data

• GeoTiff & Sid
 – These files are geo referenced images that can be downloaded and used as a back drop for other data (point, line, and polygons)
Vector Data

• Vector data are files that are line or point or polygon files (usually in a shp file format). These files represent roads, rivers, cities(pts.), and city boundaries.
State GIS Web Sites and NRCS Data Gateway

MARIS
Mississippi Automated Resource Information System
3625 Ridgewood Road, Jackson, MS 39211-6458 (601) 432-0128 (601) 432-0693 (FAX)

MARIS MISSION

- Serve as the legislative mechanism within Mississippi state government to provide for the systematic arrangement, availability, and use of digital natural and cultural resource information
- Encourage compatibility of Geographic Information Systems (GIS) and data distribution within state government.

Serving Mississippi's GIS needs by providing Mapping, Geodata, Education, and Service since 1982.

TENNESSEE.GOV
The Official Web Site of the State
Department of Finance & Administration
Dave Goertz, Commissioner

Office for Information Resources
G1S Services

Welcome to the GISource website, G1S Services Gateway to the Internet. This site will be a dynamic source for information about geospatial technologies in Tennessee state government.

Mission
The mission of the G1S Services Division is to provide the highest possible quality geospatial services to users within the State of Tennessee in a timely fashion as economically as possible. The Division will facilitate the efficient and effective management of the human, cultural, and financial, and natural resources of the State of Tennessee, and its local communities. Geospatial services are defined as technical, management, and administrative consulting, data provision, application development and implementation services of spatial information.

Login

Find Data

Map Viewer

Applications

FTP Rasters

Geostar is an on-line data delivery system that allows users seamless access to digital map data (GIS Data) in AI. There is no subscription necessary. Contact the Geostar Team with any questions or comments.

Information

About This Site

Quick Start

Free GIS Data

Contact Us

Geostar Site

The Geospatial Data Gateway provides one-stop shopping for data and environmental data at anytime. It delivers data from all over the state, based on your area of interest, without the need of a library catalog, customizing the format, a downloaded or shipped on CD or DVD.

Minimum Requirements: Microsoft Internet Explorer 3.0 or Netscape Navigator 4.7 with Java installed.

WARNING: This is a United States Department of Agriculture computer system, which may be accessed and used only for official G activities, or as otherwise permitted by regulations, by authorized personnel. Unauthorized access or use of this computer system by violators to criminal, civil, and/or administrative action. All information on this computer system may be intercepted, recorded, read disclosed by and to authorized personnel for official purposes, including criminal investigations. Access or use of this computer system is at the risk of the user, whether authorized or unauthorized, constitutes consent to these terms.
Questions?