NAICC Annual Meeting: January 20-23, 2010

Quality Assurance Session

J.J.’s Technical Services

John J. Obrist RQAP-GLP
Field/Lab Synergy: How the Field Affects the Lab
Field Facility: Protocol Requirements

• Test Substance Receipt and Storage
• Test System Requirements (RAC/Decline)
• Typical Application Techniques
• Calibration (Output)
• Calibration (Speed)
• Tank Mix Calculations
• Sample Collection
Field Facility: Protocol Requirements (continued)

- Sample Storage
- Sample Shipment
Test Substance Receipt and Storage

• How Received at Field Facility (Ambient/Refrigerated/Frozen)
• How to be Stored (Protocol, COA, MSDS, Special Instructions, etc.)
• Temperature Monitoring Devices (Manual/Automated) and Backup
• Transport of Test Substance to Field Site
 – How extremes in temperature were controlled
Test System Requirements (RAC/Decline)

• Bare Ground (Soil Dissipation)
 – # of sampling events (duration) / # of replicate plots

• Row Crops / Tree Fruit/Nuts
 – minimum # of rows
 – minimum # of fruit
 – minimum # of areas
 – minimum sample weight
 – minimum # of sampling events
Typical Application Techniques

• Bare Ground (Broadcast)
 – Backpack or tractor-mounted boom

• Row Crops (Foliar Broadcast or Foliar-Directed)
 – Backpack or tractor-mounted boom
 – Over-the-top / individual rows
 – Boom width (larger than planted rows)
Typical Application Techniques (continued)

• Tree Fruit / Nuts (Foliar-Directed)
 – Tractor-mounted boom (airblast)
 – Backpack (MistBlowers)
 – High Pressure Hand Guns

 – Typically, 1/2 row width for each pass
Typical Application Techniques (continued)

• Propellant
 – CO₂
 – Compressed Air
 – Forced Air
 – PTO / Diaphragm Pump
Calibration (Output)

- Straight Boom (Broadcast - Soil/Foliar)
 - Type of nozzles used
 - number of nozzles used
 - distance between nozzles
 - measurement of the output of individual nozzles (how collected/measured)
 - Total Output (mL/sec) per Run
Calibration (Output) (continued)

- MistBlowers and/or Handguns (Foliar-Directed)
 - Single nozzle / Orifice
 - Type of nozzle / or Orifice setting used
 - Measurement of the output of the nozzle or orifice (how collected/measured)
 - Total Output (mL/sec) per run
Calibration (Output) (continued)

• Airblast (Foliar-Directed)
 – Type of nozzles used
 – number of nozzles used
 – distance between nozzles (typically not used)
 – measurement of the output of individual nozzles (how collected/measured)
 – measurement of the total output (how measured)
 – Total Output (gal/min to mL/sec) per Run
Calibration (Speed)

- **Speed Calibration**
 - Determine m/sec or ft/sec
 - \(m/sec = \frac{mL/sec \ (output)}{1000 \ mL/L \times 10,000} \ \frac{m^2/ha}{m \ (swath \ width)} \div \frac{L/ha \ (target \ spray \ rate)}{m/sec} \)
 - Determine sec/pass
 - \(sec/pass = \frac{m \ (pass \ length)}{m/sec} \)
 - Speed trial runs are within protocol limits
Tank Mix Calculations

- Total volume needed for plot
- Check for calculated overage
- Check for calculated test substance needed
- QA should conduct an independent tank mix calculation to assure that all parameters agree with the protocol (separate from PFI)
- Assure that all components are in the mix
Sample Collection

- # of fruit or areas (locations) or minimum sample weight / Sample
- # of independent samples / event
- # of retain samples / event
- # of Events (Decline Phase)
- Type of fruit (small or large)
- Small Fruit - Need more to obtain weight
Sample Collection (continued)

- Large Fruit (Sample weight reduction)
 - Ex: Watermelon
 - Fruit maybe halved or quartered
 - If halved, cut longitudinally, retain one half
 - Alternatively, cut into quarters, retain opposite quarters, discard remainder

- Removal of dead wrapper leaves (cabbage)
- Removal excess soil (root crops)
Sample Storage

• Transport of Samples from Field to Storage
 – Separate containers for UTC and TRT
 – Coolant used to transport samples
 – Duration of sample transport from field to storage
Sample Storage (continued)

- How to be Stored (Refrigerated or Frozen)
- Separation of UTC and TRT Samples
- Temperature Monitoring Devices (Manual/Automated) and Backup
- Duration of storage before shipment
Sample Shipment

- How to be Shipped (Refrigerated or Frozen)
- Separation of UTC and TRT Samples
- Shipment Company
- Duration of shipment