Nitrogen decisions and tools to make them

Peter Scharf
University of Missouri
Managing Nitrogen in Crop Production
Peter Scharf

Published by the American Society of Agronomy in 2015
Available via Amazon or ASA
$30
Nitrogen decisions

- Timing
- Rate
- Source
- Placement

Biggest impact decision, past 10 years
Nitrogen timing

- Biology
- Equipment
- Weather
Nitrogen timing: know the biology

- Corn for grain
 - First application planting to chest-high
 - Last application by tassel
- Corn for silage
 - Last application by waist-high
- Wheat
 - Just before jointing
 - At greenup if tillers are needed
- Cotton
 - First application by first square
 - Last application by first flower
Yield response to N depends a lot on need, not much on timing

8 small-plot trials in producer fields, 1997

Field with high need for N

Field with low need for N

time of single-shot 200 lb N application
Nitrogen timing: equipment matters

1 acre in 3 minutes

3 acres in 1 minute

Make your equipment match your system & vice versa
Spring N

- I like dry with a cart on corn that’s 1-2 feet tall (also wheat, cotton, grass…)

- Fast
- Not very expensive
- You control it
- Unlikely to be lost
Nitrogen timing: weather is everything

- If you live where there’s less than 25 inches of rain, timing probably doesn’t matter
- Potential for loss is what makes managing N different than P & K
- Timing matters in wet years (or with over-irrigation)
Nitrogen timing in a wet year

Effect of N timing on corn yield (Urea + Agrotain)

- 140 pounds N applied in February 2013 Missouri
- 85 bushels applied in February
- 88 bushels applied in April
- 161 bushels applied in July

Do you ever make an N rate decision with a 70 bushel impact?
Nitrogen timing in a dry year

Doesn’t matter
Central Missouri 2008: in-season N kicks butt

180 N at planting

+ 44 bu/ac

110 N sidedress knee-high
What if N is lost after you apply?
Yellow corn can be rescued

0 bu

+30 bu
The worse it looks, the more it responds.

<table>
<thead>
<tr>
<th>Rescue N trial</th>
<th>Year</th>
<th>Stage</th>
<th>Yield response (bu/acre) to N when stress level was:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>1</td>
<td>1998</td>
<td>V8</td>
<td>23</td>
</tr>
<tr>
<td>4</td>
<td>2010</td>
<td>VT</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>2010</td>
<td>VT</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>2010</td>
<td>VT</td>
<td>8</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Rescue N trial</td>
<td>Year</td>
<td>Stage</td>
<td>Yield response (bu/acre) to N when stress level was:</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
<td>-------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>3</td>
<td>2010</td>
<td>VT</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2010</td>
<td>VT</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2010</td>
<td>VT</td>
<td>-2</td>
</tr>
<tr>
<td>4</td>
<td>2010</td>
<td>VT</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>2010</td>
<td>VT</td>
<td>28</td>
</tr>
<tr>
<td>6</td>
<td>2010</td>
<td>VT</td>
<td>8</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>13</td>
</tr>
</tbody>
</table>
How do I know if it’s yellow?
Look from the air
I started a company to do this

20% commission/discount for consultants

Aerial photo, $2/acre: Any problem?
Yield loss map, $4/acre: How big is my problem?
N rate control file, $4/acre: Solve my problem optimally
March topdress makes a lot more wheat
(Just before jointing)

Columbia 2005, 2006
If you must topdress early, use ESN!

Anytime you topdress urea, use Agrotain!

Columbia 2005, 2006
Nitrogen rate

• Soil contribution varies
 – Year to year
 – Field to field
 – Place to place within a field

• Plant color can measure soil contribution, predict best rate

• Best N rate not predicted by yield, soil tests

• Computer models are the newest idea
Soil organic matter: the nitrogen sponge

Quite stable; release depends on weather, past N rates, tillage, drainage

40%
35%
25% lost

Lb N/acre
organic N fertilizer N for corn
Soil N supply is spatially variable

Yield with no N: 13 to 145 bu/acre

Yield with unlimited N: 160 to 220 bu/acre

Wide yield variability

Adding N reduces variability
Optimal N rate is variable within a field
Crop color is the most accurate way I’ve found to predict how much N is needed.
Color measurements are more accurate than soil tests or yield data from 64 fields, 7 states.

- **9%** predictive ability for pre-plant soil nitrate.
- **4%** predictive ability for optimal N rate.
- **54%** predictive ability for corn 1 to 2 feet tall.

Optimal N Rate vs. yield at optimal N rate.
Diagnosing N rate from aerial photos

Research: dark corn needs low N rate, light corn needs high N rate

Field is half-fertilized

Eastern Kansas, June 2, 2016, corn is waist high

My company: conflict of interest
Crop sensors: What do they do?

Controller runs ball valve to change fertilizer rate

Computer in cab reads sensors, calculates N rate, directs controller

sensors
Sensor Demo Outcomes

- Corn 1 to 7 feet, 55 fields, all N sources
- Increased yield by 2 bushels/acre
- Saved 14 lb N/acre
- Decreased ‘surplus N’ by 25%
 - ‘Surplus N’ is the difference between N applied and N carried away in grain
- Cotton ‘mid-square’, 14 fields, urea or UAN
 - Increased lint yield by 19 lb/acre
 - Saved 6 lb N/acre
Computer simulation models

• Equations built to simulate the world
 – Water distribution/redistribution in soil
 – Nitrogen conversions
 – Crop growth
 – Updated daily on each of the above

• History
 – Powerful for scenario-building
 – Not very accurate
Computer simulation models

- Three introduced commercially in 2014 for N fertilizer management
- Adapt-N (Agronomic Technology)
- Encirca (DuPont Pioneer)
- Nitrogen Advisor (Climate Corp/Monsanto)
How do they compare?

- Performance
- Price
- Situation

Very little information is available
MFA 2016 trial

Adapt-N
Nitrogen Advisor
NVision Ag

Half-fertilized; tell us what to do
MFA 2016 trial, Yield by Program

Yield bu/ac

<table>
<thead>
<tr>
<th>Program</th>
<th>Yield (bu/ac)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapt-N</td>
<td>147.6</td>
</tr>
<tr>
<td>Climate</td>
<td>146.8</td>
</tr>
<tr>
<td>N Rich Strip</td>
<td>151.6</td>
</tr>
<tr>
<td>N-Vision</td>
<td>153.1</td>
</tr>
</tbody>
</table>
MFA 2016 trial, N Rate by Program

<table>
<thead>
<tr>
<th>Program</th>
<th>Total N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapt-N</td>
<td>116.5</td>
</tr>
<tr>
<td>Climate</td>
<td>121.4</td>
</tr>
<tr>
<td>N Rich Strip</td>
<td>246.0</td>
</tr>
<tr>
<td>N-Vision</td>
<td>123.5</td>
</tr>
</tbody>
</table>
Photos, sensors, computer models: price (planned sidedress)

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVision Ag image + N rate control file</td>
<td>$6/acre</td>
</tr>
<tr>
<td>Ag Leader (OptRx) or Trimble (Greenseeker) sensors</td>
<td>~$15,000 to $20,000</td>
</tr>
<tr>
<td>Adapt-N model</td>
<td>$3/acre</td>
</tr>
<tr>
<td>Encirca model</td>
<td>$10/acre</td>
</tr>
<tr>
<td>Nitrogen Advisor model</td>
<td>$1500/farm</td>
</tr>
</tbody>
</table>
Photos, sensors, computer models: price (rescue N)

<table>
<thead>
<tr>
<th>Product</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVision Ag image</td>
<td>$2/acre (Wet years only)</td>
</tr>
<tr>
<td>NVision Ag yield loss map & summary</td>
<td>$4/acre</td>
</tr>
<tr>
<td>NVision Ag N rate control file</td>
<td>$4/acre</td>
</tr>
<tr>
<td>Adapt-N model</td>
<td>$3/acre (Every year?)</td>
</tr>
<tr>
<td>Encirca model</td>
<td>$10/acre</td>
</tr>
<tr>
<td>Nitrogen Advisor model</td>
<td>$1500/farm</td>
</tr>
</tbody>
</table>
Photos, sensors, computer models: situational ads & disads

Aerial photos

Advantages:
- Fast evaluation
- Simple
- Trust the plant
- Uniform (except UAV)

Disadvantages:
- Wait for plane (daily satellite will fix)
- Need high-N reference if half-fertilized
- Best after canopy

Sensors

Advantages:
- Immediate
- Trust the plant
- Cheap if used a lot

Disadvantages:
- Learning curve
- Greenseeker ‘drift’
- OptRx interpretation
- Don’t help you decide where to go
- Capital cost upfront
- Need high-N ref

Models

Advantages:
- Multiple times
- Any time (but likely more accurate later)

Disadvantages:
- Accuracy unknown
- Early commitment (pay even if unused)
- Data input needed

= important for rescue N
= important for planned sidedress
Thanks!

Questions?

06/08/2006
Is fall N needed?

Average of 8 Missouri experiments, ave 80 & 120 lb N rates
Is fall N needed?

• Sometimes but usually not
• Overall a slight yield advantage
 – Just enough to pay for the trip if wheat price is good
• I recommend fall N:
 – for sandy soils (20-30 lb)
 – when P is needed
 – after exceptional corn yields
Splitting spring N

• Who thought of this, anyway?
• Europeans
 – Cool moist summers
 – Long grainfill period
 – Potential for N loss
Splitting spring N

• In the US?
• East coast (Virginia, Carolinas)
 – Sandy soils
 – Don’t hold N well
 – **Potential for N loss**
 – Don’t provide N well (low organic matter)
 – About a 5 bushel advantage on average
Should I split my spring N?

- Do you have above-average potential for N loss?
- Maybe split on sandy soils, otherwise don’t bother
Should I split my spring N?

Average of 7 Missouri experiments
When should I apply my spring N?

- Answer: March!
- Exception: Thin stand in February
- When the stand is thin, tillering has probably been limited by N availability
- February N will stimulate new tillers
February N will stimulate new tillers

![Graph showing the relationship between N rate in February and tillers. The graph indicates a positive correlation between the N rate and the number of tillers. There are two data points: one at a high N rate showing a high number of tillers at greenup and one at a lower N rate showing a lower number of tillers at jointing.](image-url)
Wheat N timing:
Summary

• Fall N probably not profitable except:
 – On sandy soils
 – After exceptional corn yields
• Split spring N probably not profitable except:
 – On sandy soils
• Avoid January topdress
• If you must topdress in January, use ESN
Wheat N management: Summary

• Topdress in February for poorly-tillered fields
 – Stand looks thin

• Topdress in March if not sandy or thin

• If topdressing urea, USE AGROTAIN!
Locations of sensor demonstration fields 2004-2008

Total: 92
What kind of N applicator can you use sensors with?
Injecting anhydrous ammonia
injecting solution (tractor)
injecting solution (high-clearance)
Spinning on dry N
(easier to get a wide range of rates)