

Farmers frequently...

...adopt new technologies

Evolution of Modern Agriculture

- Bigger
- Stronger
- Faster

- Automated
- Easy to use
- Targeted

Real-Time Targeted Weed Management

Alternative Actuators

Mechanical Weed Removal

Targeted Herbicide Applications

Targeted Weed Management

- Actuators and herbicides that were not economically feasible for broadcast applications may be feasible on a targeted scale.
- Alternative weed control options in reduced or no-till systems.
- Opportunities to make equipment lighter (less soil compaction) with reduced fossil fuel consumption (climate change).

Targeted Weed Management Only Effective if:

- Weeds density is low enough that broadcast applications are not required.
 - Technology must be used within an IWM
 - Preemergence herbicides may be required
- Weed density is high enough to warrant action.
- Weeds occur in a non-uniform pattern on a field scale.
- There are herbicides registered for use in the desired crop.
- Weeds are not resistant to the registered herbicides.

Integrate Targeted Weed Management Technologies Into An IWM Program for Tomato

Objective: Apply herbicides only where needed to adequately manage weeds.

Test Crop: Tomato

Real-Time Targeted Weed Management

Trained AI Programs

RGB Cameras

Machine Vision

PRE Bed-Top Herbicide Applications (1/season)

POST Bed-Top Herbicide Applications (1/season)

POST Row Middle Herbicide Applications (4/season)

Total Applications (6/season)

Purple nutsedge density in s strawberry field

Nutsedge population: 98.2k

Targeted Weed Management

Reduced herbicide use may have unintended consequences:

- Label changes
- Price increases
- Slowed product development

A.I. and Herbicide Resistance

End-Effector Development

- Improved targeting accuracy for herbicide application technology
- Continued improvements in alternative end-effectors such as lasers, grit blasters, heat, steam, etc, with an emphasis on energy efficiency and field hardening.
- Continued improvements in targeted mechanical cultivation.

Where are we going?

- Improved weed and crop detection models.
- Increase in the number and size of open access image databases with labelled images.
- Improved user interfaces to make it easier for people with no programming experience to train deep learning models.
- Improved actuators
- Fully integrated systems

Weed Management Is Changing Forever

Acknowledgments

- Emily Witt, Mike Sweat, and the Weed Science team at GCREC
- Research Was Partially Funded by:
 - the Florida Department of Agriculture and Consumer services
 - the Florida Strawberry Research and Education Foundation.
 - USDA-NIFA

Thank you!

Nathan S. Boyd, PhD

Gulf Coast Research and Education Center 14625 CR 672, Wimauma, FL, 33598

Phone: 813-419-6613 email: nsboyd@ufl.edu