

Bt Resistance

David Kerns Department of Entomology Texas A&M AgriLife Extension Service College Station, TX

Bt Proteins Used in Bt Corn and Cotton

Crop	Cry1	Cry2	Vip3A
Cotton	Cry1Ac, Cry1Ab, Cry1F	Cry2Ab, Cry2Ae	Vip3A19
Corn	Cry1Ab, Cry1F, Cry1A.105	Cry2Ab2	Vip3A20

Corn Earworm Bt Resistance Monitoring (Cry1Ac, Cry2Ab2, Vip3Aa)

174 field populations with >267,264 insects from 2016-2023

Diet-overlay Bioassays (2016-2023)

	Percentage of populations with RR > 10X								
<i>Bt</i> protein	2016 (5)	2017 (14)	2018 (34)	2019 (30)	2020 (5)	2021 (12)	2022 (37)	2023 (37)	
Cry1Ac	/	100%	94%	96%	100%	92%	100%	100%	
Cry2Ab2	80%	77%	73%	73%	100%	92%	74%	97%	
Vip3Aa	0%	0%	0%*	0%*	0%	0%	0%	0%	

Early Warning of Resistance to Vip3Aa Protein

Open Access Article

Early Warning of Resistance to Bt Toxin Vip3Aa in Helicoverpa zea

by 🙁 Fei Yang ^{1,*} 🖾 💿, 😩 David L. Kerns ¹ 🖾, 😫 Nathan S. Little ² 🖄, 😫 José C. Santiago González ¹ 🖾 and S Bruce E. Tabashnik ^{3,*} 🖾 💿

¹ Department of Entomology, Texas A&M University, College Station, TX 77843, USA

² USDA Agricultural Research Service, Stoneville, MS 38776, USA

³ Department of Entomology, University of Arizona, Tucson, AZ 85721, USA

Authors to whom correspondence should be addressed.

Toxins 2021, 13(9), 618; https://doi.org/10.3390/toxins13090618

Increase from 2016 to 2020 in the Vip3Aa resistance ratio relative to the BZ lab strain for 71 field-derived strains of CEW. Linear regression: log (y) = 0.14X - 282, R² = 0.12, df = 69, P = 0.003.

CORN EARWORM FEEDING IN LEPTRA CORN TX & MS -2018-19

Technology	Bt traits
NBT-1&2	None
Intrasect	CryIAb+CryIF
VT2P	CryIA.105+Cry2Ab2
Leptra	CryIAb+CryIF+Vip3A

Technology	Bt traits
NBT-1&2	None
Intrasect	CryIAb+CryIF
VT2P	CryIA.105+Cry2Ab2
Leptra	CryIAb+CryIF+Vip3A

Technology	Bt traits
NBT-1&2	None
Intrasect	CryIAb+CryIF
VT2P	CryIA.105+Cry2Ab2
Leptra	CryIAb+CryIF+Vip3A

Two Types of Vip3Aa Resistance?

Bt Resistance Selection Pressure from Intrasect

% change in susceptibility =
$$\left(1 - \left(\frac{(\text{susceptible strain } LC_{50} \times \text{non-Bt collection } LC_{50})}{(\text{susceptible strain } LC_{50} \times \text{Bt hybrid collection } LC_{50})}\right)\right) \times 100$$

Intrasect = Cry1Ab + Cry1F

Bt Resistance Selection Pressure from VT2P

% change in susceptibility =
$$\left(1 - \left(\frac{(\text{susceptible strain } LC_{50} \times \text{non-Bt collection } LC_{50})}{(\text{susceptible strain } LC_{50} \times \text{Bt hybrid collection } LC_{50})}\right)\right) \times 100$$

VT2P = Cry1A.105 + Cry2Ab2

H. zea- F_2 FAMILIES SURVIVING THE DIAGNOSTIC CONCENTRATION OF VIP3Aa39 (3µg/cm²)

Collection site	Year of collection	Method to establish the F ₂ families	Number of F ₂ families screened	Number of surviving F _{1,2} 2 families	Estimated number of resistance alleles ³	Estimated resistance allele frequency	Confidence Interval (95%)
Texas	2018-2019 ¹	Cross with SS♂ Light trap	126	2 (1.59%)	2	0.0042	(0.0011 – 0.0151)
Midsouth	2019-2020 ²	Cross with SS \bigcirc	192	5 (2.60%)	5	0.0130	(0.0056-0.0301)
Overall	2018-2020	Cross with SS♂ Light trap Cross with SS♀	318	7 (2.20%)	7	0.0081	(0.0039-0.0166)

1. Total insects assayed in 2018 and 2019 = 16,128 larvae

- 2. Total insects assayed 2019 and 2020 = 24,576 larvae
- 3. Based on 128 larvae per bioassay/F₂ family
- 4. 5 survivors \geq 2nd instar with at least 1 larva \geq 3rd instar
- 5. Number of resistant alleles based on results from simple monogenic inheritance models ($\chi^2 < 3.841$ with 1 df, p > 0.05)

VIP3Aa RESISTANT STRAINS IDENTIFIED

Insect					No. insects within instar		nstar
Family	Origin	Host	Ν	No. survivors	2nd instar	3rd instar	4th instar
LA-M1	Alexandria, LA	BG2 Cotton	128	21	0	4	17
LA-AC4	Winnsboro, LA	VT2P Corn	128	20	0	6	14
MS-R2	Stoneville, MS	Cry1Ab Sweet corn	128	2	1	0	1
MS-R15	Stoneville, MS	Cry1Ab Sweet corp	128	22	3	19	0
MS-R21	Stoneville, MS	VT2P	128	1	0	0	1

Survivorship when exposed to 3.0 ug/cm² Vip3Aa39 diet overlays

In 2019-2020 we identified 5 - F2 families carrying Vip3Aa resistant alleles

Jose Santiago Gonzalez, Texas A&M University

VIP3Aa RESISTANT ALLELES

Insect Family	Origin	Host	N	Observed survivors	Expected survivors for 2 alleles	χ²	P-value
LA-M1	Alexandria, LA	BG2 Cotton	128	22.9	32	3.441	0.064
LA-AC4	Winnsboro, LA	VT2P Corn	128	22.5	32	3.738	0.054
MS-R15	Stoneville, MS	Cry1Ab Sweet corn	128	24.8	32	2.141	0.143

Survivorship when exposed to 3.0 ug/cm² vip3Au39 diet overlays

P-values > 0.05; indicated that these families were carrying 2 resistant alleles and were homozygous resistant for Vip3Aa

The collection from the CryIAb sweet corn in Stoneville, MS yielded - 3 Vip3Aa resistant alleles (RR, RS)

Jose Santiago Gonzalez, Texas A&M University

Vip3Aa Resistant Populations

Insect population	Collected location (Year)	LC50 (95% CL) (µg/cm²)	Resistance ratio	Inheritance
CBW-BZ-SS	/	0.11 (0.09, 0.13)	1	/
CBW-TX-VIP-RR	Snook, TX (2019)	> 100	> 909.1	Recessive, Autosomal, single-gene
CBW-LA-M1-VIP-RR	Alexandria, LA (2019)	> 100	> 909.1	Recessive, Autosomal, single-gene
CBW-MS-R2-VIP-RR	Stoneville, MS (2020)	> 100	> 909.1	Recessive, Autosomal, single-gene
CBW-MS-R15-VIP-RR	Stoneville, MS (2020)	> 100	> 909.1	Recessive, Autosomal, single-gene
CBW-LA-AC4-VIP-RR	Winnsboro, LA (2020)	> 100	> 909.1	Recessive, Autosomal, single-gene

Vip-RR Interstrain Complementation Tests

Among these 5 strains there appears to be 3 different major gene loci conveying resistance

The MS strains are similar to each other CBW-MS-R2-RR CBW-MS-R15-RR The TX strain is similar to one of the LA strains CBW-TX-LT#70-RR CBW-LA-M1-RR One LA strain is unique CBW-LA-AC4-RR

Stability of Vip3Aa Resistance

- Strains evaluated
 - CBW-TX-LT70-RR (Texas)
 - CBW-MS-R15-RR (Mississippi)
- Bt resistance selection pressure
 - No selections
- Measured mortality to Vip3Aa39 over 10 generations

Type III Tests of Fixed Effects							
EffectNum DFDen DFF ValuePr							
strain	4	90	469.03	<.0001			
concentration	5	90	23.83	<.0001			
strain*concentration	20	90	22.06	<.0001			

Resistance stability of CBW-LT70-Vip3Aa-RR (Louisiana)

Resistance to Vip3Aa was highly stable under no selection pressure

Type III Tests of Fixed Effects							
Effect	Num DF	Den DF	F Value	Pr > F			
strain	4	90	446.97	<.0001			
concentration	5	90	24.88	<.0001			
strain*concentration	20	90	22.07	<.0001			

Resistance stability of CBW-R15-Vip3Aa-RR (Mississippi)

Vip3Aa39 concentration (µg/cm²)

Resistance to Vip3Aa was highly stable under no selection pressure

Triple Resistant Genotype "Super Worm" Response to Bt Proteins in Diet-overlay Bioassays

CBW-GI3-Cry-RR × CBW-TX-LT#70-Vip3A-RR = Triple-RR "Super Worm"

Bt protein	Insect strain	Nª	LC ₅₀ (95% CL) (μg/cm²) ^ь	Slope ± SE	X ²	df	Resistance ratio ^c
Vip3Aa39	CBW-BZ-SS	512	0.33 (0.16, 0.78)	1.80 ± 0.42	77.2	26	-
	CBW-Triple-RR	512	> 10.0	/	/	/	> 30.3
Cry1Ac	CBW-BZ-SS	512	0.09 (0.07, 0.12)	1.19 ± 0.10	38.2	26	-
	CBW-Triple-RR	512	23.83 (10.70, 108.76)	0.76 ± 0.14	19.6	18	264.8
Cry2Ab2	CBW-BZ-SS	512	0.11 (0.08, 0.16)	1.33 ± 0.13	36.7	26	-
	CBW-Triple-RR	512	54.48 (20.90 <i>,</i> 419.79)	0.73 ± 0.15	36.7	22	495.3

Stability of Cry and Vip3Aa Resistance in a Triple Resistant Strain

- Strain evaluated
 - CBW-TRE-RR (Triple Resistant)
- Bt resistance selection pressure
 - No selections
 - Selected every generation with Cry1Ac at 6.0 $\mu g/cm^2$
 - Selected every generation with Cry2Ab2 at 6.0 $\mu g/cm^2$
 - Selected every generation with Vip3Aa39 at 6.0 $\mu g/cm^2$
 - Selected every generation with Cry1Ac + Cry2Ab2 + Vip3Aa39, each at 6.0 μ g/cm²
- Measured mortality to Cry1Ac, Cry2Ab2, and Vip3Aa39 over 10 generations
 - Discriminating dose of each protein at 10 $\mu g/cm^2$
 - Full range bioassays

Type III Tests of Fixed Effects									
Effect Num DF Den DF F Value Pr >									
strain	5	72	175.93	<.0001					
Generation	3	72	0.33	0.8065					
Strain*Generation	15	72	7.53	<.0001					

Resistance to Cry1Ac was highly stable, and did not differ from the unselected regardless of Bt protein

Type III Tests of Fixed Effects								
EffectNum DFDen DFF ValuePr								
strain	5	72	118.05	<.0001				
Generation	3	72	9.12	<.0001				
Strain*Generation	15	72	3.37	0.0003				

All strains not selected with Cry2Ab noted a decline in susceptibility after 1 generation.

Type III Tests of Fixed Effects									
Effect Num DF Den DF F Value Pr > F									
strain	5	69	575.54	<.0001					
Generation	3	69	1.19	0.3196					
Strain*Generation	15	69	1.78	0.0554					

Resistance to Vip3Aa was highly stable, and did not differ from the unselected regardless of Bt protein

BENEFIT OF PYRAMIDED Bt PROTEIN VS. TRIPLE GENE RESISTANT H. zea

Survival of CBW-TRE-RR-All at 5 ug/cm² of Bt proteins

Bt proteins of 5 ug/cm²

Insect strain	Protein (5ug/cm2)	Ν	Observed survival (%)	No. O	Expected survival (%)	No. E	χ^2	<i>P</i> -value
CBW-TRE-RR-All	Cry1A/Cry2A	64	65.62	41.9968	63.71	40.7744	0.100984	0.751
CBW-TRE-RR-All	Cry1A/Vip3A	64	65.62	41.9968	89.21	57.0944	36.99993	< 0.001
CBW-TRE-RR-All	Cry2A/Vip3A	64	29.69	19.0016	69.21	44.2944	46.90675	< 0.001
CBW-TRE-RR-All	Cry1A/Cry2A/Vip3A	64	14.06	8.9984	62.72	40.1408	64.81003	< 0.001

Bollworm Injury to Bt Cotton - High Bollworm Pressure

Benefit from Spraying

College Station, TX (2) - 2018

Bt Cotton Trait Performance Texas

Percent Reduction in Fruit Damage Relative to Non-Bt								
Technology	June 28	July 3	July 12	July 17	July 25	Aug 1	Mean	
BG2	97.79	94.47	90.91	75.47	71.52	63.09	82.21	
WS3	97.04	96.67	94.00	98.21	100.00	94.64	96.76	
BG3	96.34	98.87	96.91	91.26	100.00	100.00	97.23	

2023 Vip3Aa Cotton Unexpected Injury Events

			Resistance Ratio		
Location	Technology	% damaged fruit	Cry1Ac	Cry2Ab2	Vip3Aa39
Starkville, MS	TwinLink Plus	17%	10298	1215	0.30 (7.50)
Wallis,TX	WideStrike 3	6% (25%)	599.2	60.8	0.37 (9.25)

- Vip3Aa failures in 2023 occurred in cotton that was cut out
- Damage was almost exclusively to the bolls
- Vip3Aa resistance was slightly elevated but not high enough to warrant concern
- Unexpected injury was most likely associated with low Bt expression

CRY2A CONCENTRATIONS

CRY2A LEAF CONCENTRATIONS

- Significant three-way interactions
- Upper leaves decline as the season progressed
- 43 DAP irrigated tissues begin to separate
- 54 DAP dryland tissues begin to separate
- Perhaps Cry2A concentrations accumulate in older tissue

CRY2A SQUARE CONCENTRATIONS

- No differences among different zones
- Higher Cry2A concentrations in dryland squares late in the season
- In general, square buds higher concentrations than bracts
- Overall lower concentrations than leaves

CRY2A BOLL CONCENTRATIONS

- Similar trends as leaves
- Mature lower bolls obtain higher concentrations
- Cry2A concentrations highest in mature dryland bolls
- Cry2A Concentrations in bolls significantly lower than leaves

VIP3A CONCENTRATIONS

VIP3A LEAF CONCENTRATIONS

- Overall concentrations lower than Cry2A
- Significant three-way interaction
- Upper tissues statistically highest early season
- Vip3A Concentrations declined through season
- In contrast to Cry2A,Vip3A declines in all tissues through the season

VIP3A SQUARE CONCENTRATIONS

- Vip3A concentrations similar between leaves and squares
- Essentially no differences between squares and bracts
- No significant differences between water regimes

VIP3A BOLL CONCENTRATIONS

- Similar trends emerge
- Vip3A concentrations lower in older bolls
- Differences not discovered between dryland or irrigated
- Overall Vip3A concentrations lower in bolls compared to leaves and squares

Thank you & Questions?

David Kerns

Texas A&M University, College Station, TX

Email: <u>David.Kerns@ag.tamu.edu</u>

Phone: 318-439-4844

United States Department of Agriculture National Institute of Food and Agriculture

